An Introduction to Spectral Graph Theory

Sam Spiro, UC San Diego.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A priori, A is just a table of numbers representing G, and in particular there's no reason to expect that its structure as a linear operator encodes anything about G.

A priori, A is just a table of numbers representing G, and in particular there's no reason to expect that its structure as a linear operator encodes anything about G. Remarkably this is not the case!

A priori, A is just a table of numbers representing G, and in particular there's no reason to expect that its structure as a linear operator encodes anything about G. Remarkably this is not the case! Because A is a real symmetric matrix, it has real eigenvalues $\mu_1 \ge \cdots \ge \mu_n$.

A walk of length k in G is a sequence of (not necessarily distinct) vertices x_1, \ldots, x_{k+1} such that $x_i \sim x_{i+1}$ for all $1 \le i \le k$. A walk is said to be closed if $x_{k+1} = x_1$.

A walk of length k in G is a sequence of (not necessarily distinct) vertices x_1, \ldots, x_{k+1} such that $x_i \sim x_{i+1}$ for all $1 \le i \le k$. A walk is said to be closed if $x_{k+1} = x_1$.

A walk of length k in G is a sequence of (not necessarily distinct) vertices x_1, \ldots, x_{k+1} such that $x_i \sim x_{i+1}$ for all $1 \le i \le k$. A walk is said to be closed if $x_{k+1} = x_1$.

Lemma

The number of walks of length k from u to v is A_{uv}^k .

A walk of length k in G is a sequence of (not necessarily distinct) vertices x_1, \ldots, x_{k+1} such that $x_i \sim x_{i+1}$ for all $1 \le i \le k$. A walk is said to be closed if $x_{k+1} = x_1$.

Lemma

The number of walks of length k from u to v is $A_{\mu\nu}^k$.

By definition of matrix multiplication, we have

$$A_{uv}^k = \sum A_{uw_1} \cdots A_{w_{k-1}v}$$

where the sum ranges over all sequences w_1, \ldots, w_{k-1} .

A walk of length k in G is a sequence of (not necessarily distinct) vertices x_1, \ldots, x_{k+1} such that $x_i \sim x_{i+1}$ for all $1 \le i \le k$. A walk is said to be closed if $x_{k+1} = x_1$.

Lemma

The number of walks of length k from u to v is $A_{\mu\nu}^k$.

By definition of matrix multiplication, we have

$$A_{uv}^k = \sum A_{uw_1} \cdots A_{w_{k-1}v},$$

where the sum ranges over all sequences w_1, \ldots, w_{k-1} . The term will be 1 if this sequence defines a walk and will be 0 otherwise w_1, \ldots, w_{k-1} .

Lemma

The number of walks of length k from u to v is $A_{u,v}^k$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The number of walks of length k from u to v is $A_{u,v}^k$.

Corollary

The number of closed walks of length k is $Tr(A^k)$

The number of walks of length k from u to v is $A_{u,v}^k$.

Corollary

The number of closed walks of length k is $Tr(A^k) = \sum \mu_i^k$.

The number of walks of length k from u to v is $A_{u,v}^k$.

Corollary

The number of closed walks of length k is $Tr(A^k) = \sum \mu_i^k$.

Corollary

 $\sum \mu_i^2 = 2e(G).$

The number of walks of length k from u to v is $A_{u,v}^k$.

Corollary

The number of closed walks of length k is $Tr(A^k) = \sum \mu_i^k$.

Corollary

$$\sum \mu_i^2 = 2e(G).$$

Corollary

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0.

Corollary

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Assume G is bipartite with bipartition $U \cup V$.

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0.

Assume G is bipartite with bipartition $U \cup V$. Let $x \neq 0$ be such that $Ax = \mu x$.

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0.

Assume G is bipartite with bipartition $U \cup V$. Let $x \neq 0$ be such that $Ax = \mu x$. Define y such that $y_u = x_u$ if $u \in U$ and $y_v = -x_v$ if $v \in V$.

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0.

Assume G is bipartite with bipartition $U \cup V$. Let $x \neq 0$ be such that $Ax = \mu x$. Define y such that $y_u = x_u$ if $u \in U$ and $y_v = -x_v$ if $v \in V$. Then for $u \in U$ we have

$$(Ay)_u = \sum_{v \sim u} y_v$$

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0.

Assume G is bipartite with bipartition $U \cup V$. Let $x \neq 0$ be such that $Ax = \mu x$. Define y such that $y_u = x_u$ if $u \in U$ and $y_v = -x_v$ if $v \in V$. Then for $u \in U$ we have

$$(Ay)_u = \sum_{v \sim u} y_v = -\sum_{v \sim u} x_v$$

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0.

Assume G is bipartite with bipartition $U \cup V$. Let $x \neq 0$ be such that $Ax = \mu x$. Define y such that $y_u = x_u$ if $u \in U$ and $y_v = -x_v$ if $v \in V$. Then for $u \in U$ we have

$$(Ay)_u = \sum_{v \sim u} y_v = -\sum_{v \sim u} x_v = -(Ax)_u$$

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0.

Assume G is bipartite with bipartition $U \cup V$. Let $x \neq 0$ be such that $Ax = \mu x$. Define y such that $y_u = x_u$ if $u \in U$ and $y_v = -x_v$ if $v \in V$. Then for $u \in U$ we have

$$(Ay)_{u} = \sum_{v \sim u} y_{v} = -\sum_{v \sim u} x_{v} = -(Ax)_{u} = -\mu x_{u}$$

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0.

Assume G is bipartite with bipartition $U \cup V$. Let $x \neq 0$ be such that $Ax = \mu x$. Define y such that $y_u = x_u$ if $u \in U$ and $y_v = -x_v$ if $v \in V$. Then for $u \in U$ we have

$$(Ay)_u = \sum_{v \sim u} y_v = -\sum_{v \sim u} x_v = -(Ax)_u = -\mu x_u = -\mu y_u$$

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0.

Assume G is bipartite with bipartition $U \cup V$. Let $x \neq 0$ be such that $Ax = \mu x$. Define y such that $y_u = x_u$ if $u \in U$ and $y_v = -x_v$ if $v \in V$. Then for $u \in U$ we have

$$(Ay)_{u} = \sum_{v \sim u} y_{v} = -\sum_{v \sim u} x_{v} = -(Ax)_{u} = -\mu x_{u} = -\mu y_{u}$$

Thus $Ay = -\mu y$.

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0.

Assume G is bipartite with bipartition $U \cup V$. Let $x \neq 0$ be such that $Ax = \mu x$. Define y such that $y_u = x_u$ if $u \in U$ and $y_v = -x_v$ if $v \in V$. Then for $u \in U$ we have

$$(Ay)_u = \sum_{v \sim u} y_v = -\sum_{v \sim u} x_v = -(Ax)_u = -\mu x_u = -\mu y_u$$

Thus $Ay = -\mu y$. Further, k linearly independent eigenvectors of μ correspond to k linearly independent eigenvectors of $-\mu$, so the spectrum of A is symmetric about 0.

Corollary

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0.

Conversely, if the spectrum of A is symmetric about 0, then $\sum \mu_i^k = 0$ for all odd k.

Corollary

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0.

Conversely, if the spectrum of A is symmetric about 0, then $\sum \mu_i^k = 0$ for all odd k. Thus G has no closed walks of odd length.

Corollary

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0.

Conversely, if the spectrum of A is symmetric about 0, then $\sum \mu_i^k = 0$ for all odd k. Thus G has no closed walks of odd length. In particular, G contains no odd cycles, which is equivalent to being bipartite.

Proposition

For a connected graph, the number of distinct eigenvalues of A is larger than the diameter of G.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proposition

For a connected graph, the number of distinct eigenvalues of A is larger than the diameter of G.

Theorem (Hoffman; Wilf)

$$1-\frac{\mu_1}{\mu_n}\leq \chi(G)\leq \mu_1+1.$$

Proposition

For a connected graph, the number of distinct eigenvalues of A is larger than the diameter of G.

Theorem (Hoffman; Wilf)

$$1-\frac{\mu_1}{\mu_n}\leq \chi(G)\leq \mu_1+1.$$

Theorem (Hoffman)

If G is d-regular then $\alpha(G) \leq \frac{-\mu_n}{d-\mu_n} \cdot n$.

Theorem

If G has maximum degree Δ and average degree \overline{d} . Then

$$\bar{d} \leq \mu_1 \leq \Delta.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Theorem

If G has maximum degree Δ and average degree \overline{d} . Then

$$\bar{d} \leq \mu_1 \leq \Delta.$$

Lemma

$$\mu_1 = \max_{x \neq 0} \frac{x^* A x}{x^* x}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

If G has maximum degree Δ and average degree \overline{d} . Then

$$\bar{d} \leq \mu_1 \leq \Delta.$$

Lemma

$$\mu_1 = \max_{x \neq 0} \frac{x^* A x}{x^* x}.$$

For the lower bound, let $\mathbf{1}$ be the all 1's vector.
Theorem

If G has maximum degree Δ and average degree \overline{d} . Then

$$\bar{d} \leq \mu_1 \leq \Delta.$$

Lemma

$$\mu_1 = \max_{x \neq 0} \frac{x^* A x}{x^* x}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For the lower bound, let $\mathbf{1}$ be the all 1's vector. Then

$$\mu_1 = \max_{x \neq 0} \frac{x^* A x}{x^* x}$$

Theorem

If G has maximum degree Δ and average degree \overline{d} . Then

$$\bar{d} \leq \mu_1 \leq \Delta.$$

Lemma

$$\mu_1 = \max_{x \neq 0} \frac{x^* A x}{x^* x}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For the lower bound, let $\mathbf{1}$ be the all 1's vector. Then

$$\mu_1 = \max_{x \neq 0} \frac{x^* A x}{x^* x} \ge \frac{\mathbf{1}^* A \mathbf{1}}{\mathbf{1}^* \mathbf{1}}$$

Theorem

If G has maximum degree Δ and average degree \overline{d} . Then

$$\bar{d} \leq \mu_1 \leq \Delta.$$

Lemma

$$\mu_1 = \max_{x \neq 0} \frac{x^* A x}{x^* x}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For the lower bound, let $\mathbf{1}$ be the all 1's vector. Then

$$\mu_1 = \max_{x \neq 0} \frac{x^* A x}{x^* x} \ge \frac{\mathbf{1}^* A \mathbf{1}}{\mathbf{1}^* \mathbf{1}} = \frac{\sum d_v}{n}$$

Theorem

If G has maximum degree Δ and average degree \overline{d} . Then

$$\bar{d} \leq \mu_1 \leq \Delta.$$

Lemma

$$\mu_1 = \max_{x \neq 0} \frac{x^* A x}{x^* x}.$$

For the lower bound, let $\mathbf{1}$ be the all 1's vector. Then

$$\mu_1 = \max_{x \neq 0} \frac{x^* A x}{x^* x} \ge \frac{\mathbf{1}^* A \mathbf{1}}{\mathbf{1}^* \mathbf{1}} = \frac{\sum d_v}{n} = \bar{d}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

$$\mu_1 \leq \Delta$$
.

Theorem

$$\mu_1 \leq \Delta.$$

Let x be an eigenvector of A corresponding to μ_1 and let $v \in V(G)$ be such that $|x_v|$ is maximized.

Theorem

$$\mu_1 \leq \Delta.$$

Let x be an eigenvector of A corresponding to μ_1 and let $v \in V(G)$ be such that $|x_v|$ is maximized. Then we have

 $|\mu_1 x_v| = |(Ax)_v|$

Theorem

$$\mu_1 \leq \Delta$$
.

Let x be an eigenvector of A corresponding to μ_1 and let $v \in V(G)$ be such that $|x_v|$ is maximized. Then we have

$$|\mu_1 x_v| = |(Ax)_v| = |\sum_u A_{uv} x_u|$$

Theorem

$$\mu_1 \leq \Delta.$$

Let x be an eigenvector of A corresponding to μ_1 and let $v \in V(G)$ be such that $|x_v|$ is maximized. Then we have

$$|\mu_1 x_v| = |(Ax)_v| = |\sum_u A_{uv} x_u| \le \sum_{u \sim v} |A_{uv} x_u|$$

Theorem

$$\mu_1 \leq \Delta$$
.

Let x be an eigenvector of A corresponding to μ_1 and let $v \in V(G)$ be such that $|x_v|$ is maximized. Then we have

$$|\mu_1 x_v| = |(Ax)_v| = |\sum_u A_{uv} x_u| \le \sum_{u \sim v} |A_{uv} x_u| \le d_v |x_v|$$

Theorem

$$\mu_1 \leq \Delta.$$

Let x be an eigenvector of A corresponding to μ_1 and let $v \in V(G)$ be such that $|x_v|$ is maximized. Then we have

$$|\mu_1 x_{\nu}| = |(Ax)_{\nu}| = |\sum_u A_{u\nu} x_u| \leq \sum_{u \sim \nu} |A_{u\nu} x_u| \leq d_{\nu} |x_{\nu}| \leq \Delta |x_{\nu}|.$$

Theorem

$$\mu_1 \leq \Delta.$$

Let x be an eigenvector of A corresponding to μ_1 and let $v \in V(G)$ be such that $|x_v|$ is maximized. Then we have

$$|\mu_1 x_{\nu}| = |(Ax)_{\nu}| = |\sum_u A_{u\nu} x_u| \leq \sum_{u \sim \nu} |A_{u\nu} x_u| \leq d_{\nu} |x_{\nu}| \leq \Delta |x_{\nu}|.$$

This gives $|\mu_1| \leq \Delta$, which in particular implies the result.

In fact, this proof of the upper bound can be used to prove something slightly stronger.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

In fact, this proof of the upper bound can be used to prove something slightly stronger.

Theorem

Let G be a graph and M a Hermitian matrix such that whenever $u \sim v$ we have $|M_{uv}| = 1$ and $M_{uv} = 0$ otherwise. Then

 $\mu_1(M) \leq \Delta.$

In fact, this proof of the upper bound can be used to prove something slightly stronger.

Theorem

Let G be a graph and M a Hermitian matrix such that whenever $u \sim v$ we have $|M_{uv}| = 1$ and $M_{uv} = 0$ otherwise. Then

 $\mu_1(M) \leq \Delta.$

This is not just generalization for generalization's sake!

In fact, this proof of the upper bound can be used to prove something slightly stronger.

Theorem

Let G be a graph and M a Hermitian matrix such that whenever $u \sim v$ we have $|M_{uv}| = 1$ and $M_{uv} = 0$ otherwise. Then

 $\mu_1(M) \leq \Delta.$

This is not just generalization for generalization's sake! This is one of the key observations in Hao Huang's recent proof of the sensitivity conjecture.

Let Q_n be the *n*-dimensional hypercube.

Picture from Wolfram MathWorld

Let Q_n be the *n*-dimensional hypercube.

Picture from Wolfram MathWorld

More precisely it's the graph whose adjacency matrix can be defined recursively as $A_0 = [0]$ and

$$A_n = \begin{bmatrix} A_{n-1} & I \\ I & A_{n-1} \end{bmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We recall that an induced subgraph of G is any graph that is obtained by selecting some subset of its vertices and then taking every edge of G involving vertices of this subset.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We recall that an induced subgraph of G is any graph that is obtained by selecting some subset of its vertices and then taking every edge of G involving vertices of this subset. For example, the following are all the induced subgraphs of Q_2 up to isomorphism.

We recall that an induced subgraph of G is any graph that is obtained by selecting some subset of its vertices and then taking every edge of G involving vertices of this subset. For example, the following are all the induced subgraphs of Q_2 up

to isomorphism.

Theorem (Chung, Füredi, Graham, Seymour 1988)

If H is an induced subgraph of Q_n on $2^{n-1} + 1$ vertices, then H has maximum degree at least $\frac{1}{2}\log_2(n)$.

If H is an induced subgraph of Q_n on $2^{n-1} + 1$ vertices, then H has maximum degree at least $\frac{1}{2} \log_2(n)$

If H is an induced subgraph of Q_n on $2^{n-1} + 1$ vertices, then H has maximum degree at least $\frac{1}{2}\log_2(n)$, and there exists such an induced subgraph whose maximum degree is $\lceil \sqrt{n} \rceil$.

(日) (同) (三) (三) (三) (○) (○)

If H is an induced subgraph of Q_n on $2^{n-1} + 1$ vertices, then H has maximum degree at least $\frac{1}{2}\log_2(n)$, and there exists such an induced subgraph whose maximum degree is $\lceil \sqrt{n} \rceil$.

Theorem (Gotsman, Linial 1992)

Proving that H has maximum degree at least n^{ϵ} is equivalent to solving an important problem in computer science.

(日) (同) (三) (三) (三) (○) (○)

If H is an induced subgraph of Q_n on $2^{n-1} + 1$ vertices, then H has maximum degree at least $\frac{1}{2}\log_2(n)$, and there exists such an induced subgraph whose maximum degree is $\lceil \sqrt{n} \rceil$.

Theorem (Gotsman, Linial 1992)

Proving that H has maximum degree at least n^{ϵ} is equivalent to solving an important problem in computer science.

Theorem (Huang 2019)

If H is an induced subgraph of Q_n on $2^{n-1} + 1$ vertices, then it has maximum degree at least \sqrt{n} .

Define the "twisted adjacency matrix" of Q_n by $B_0 = [0]$ and

$$B_n = \begin{bmatrix} B_{n-1} & I \\ I & -B_{n-1} \end{bmatrix}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Define the "twisted adjacency matrix" of Q_n by $B_0 = [0]$ and

$$B_n = \begin{bmatrix} B_{n-1} & I \\ I & -B_{n-1} \end{bmatrix}.$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Lemma

The eigenvalues of B_n are $\pm \sqrt{n}$ each with multiplicity 2^{n-1} .

Define the "twisted adjacency matrix" of Q_n by $B_0 = [0]$ and

$$B_n = \begin{bmatrix} B_{n-1} & I \\ I & -B_{n-1} \end{bmatrix}.$$

Lemma

The eigenvalues of B_n are $\pm \sqrt{n}$ each with multiplicity 2^{n-1} .

We prove by induction that $B_n^2 = nI$, the case n = 0 being trivial.

Define the "twisted adjacency matrix" of Q_n by $B_0 = [0]$ and

$$B_n = \begin{bmatrix} B_{n-1} & I \\ I & -B_{n-1} \end{bmatrix}.$$

Lemma

The eigenvalues of B_n are $\pm \sqrt{n}$ each with multiplicity 2^{n-1} .

We prove by induction that $B_n^2 = nI$, the case n = 0 being trivial. Inductively we have

$$B_n^2 = \begin{bmatrix} B_{n-1}^2 + I & 0\\ 0 & B_{n-1}^2 + I \end{bmatrix} = nI.$$

Define the "twisted adjacency matrix" of Q_n by $B_0 = [0]$ and

$$B_n = \begin{bmatrix} B_{n-1} & I \\ I & -B_{n-1} \end{bmatrix}.$$

Lemma

The eigenvalues of B_n are $\pm \sqrt{n}$ each with multiplicity 2^{n-1} .

We prove by induction that $B_n^2 = nI$, the case n = 0 being trivial. Inductively we have

$$B_n^2 = \begin{bmatrix} B_{n-1}^2 + I & 0\\ 0 & B_{n-1}^2 + I \end{bmatrix} = nI.$$

Thus all the eigenvalues of B_n are $\pm \sqrt{n}$.

Define the "twisted adjacency matrix" of Q_n by $B_0 = [0]$ and

$$B_n = \begin{bmatrix} B_{n-1} & I \\ I & -B_{n-1} \end{bmatrix}.$$

Lemma

The eigenvalues of B_n are $\pm \sqrt{n}$ each with multiplicity 2^{n-1} .

We prove by induction that $B_n^2 = nI$, the case n = 0 being trivial. Inductively we have

$$B_n^2 = \begin{bmatrix} B_{n-1}^2 + I & 0\\ 0 & B_{n-1}^2 + I \end{bmatrix} = nI.$$

Thus all the eigenvalues of B_n are $\pm \sqrt{n}$. Because $Tr(B_n) = 0 = \sum \mu_i(B_n)$, each appears with equal multiplicity.

Lemma (Cauchy Interlacing Theorem)

Let B be a real symmetric $n \times n$ matrix and C an $m \times m$ principal sumbmatrix of B with $m \leq n$. If B has eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n$ and C has eigenvalues $\mu_1 \geq \cdots \geq \mu_m$, then

$$\lambda_i \geq \mu_i \geq \lambda_{i+n-m}.$$

Let $V \subseteq V(Q_n)$ be a set of $2^{n-1} + 1$ vertices, and let C be the principal sumbatrix of B_n obtained by taking the rows and columns corresponding to V.

Let $V \subseteq V(Q_n)$ be a set of $2^{n-1} + 1$ vertices, and let C be the principal sumbatrix of B_n obtained by taking the rows and columns corresponding to V. By interlacing we have

$$\mu_1(C) \geq \mu_{2^{n-1}}(B)$$

Let $V \subseteq V(Q_n)$ be a set of $2^{n-1} + 1$ vertices, and let C be the principal sumbatrix of B_n obtained by taking the rows and columns corresponding to V. By interlacing we have

$$\mu_1(\mathcal{C}) \geq \mu_{2^{n-1}}(\mathcal{B}) = \sqrt{n}.$$

Let $V \subseteq V(Q_n)$ be a set of $2^{n-1} + 1$ vertices, and let C be the principal sumbatrix of B_n obtained by taking the rows and columns corresponding to V. By interlacing we have

$$\mu_1(\mathcal{C}) \geq \mu_{2^{n-1}}(\mathcal{B}) = \sqrt{n}.$$

Observe that $C_{uv} = B_{uv} = \pm 1$ iff $u \sim v$ in Q_n (and hence H) and $C_{uv} = 0$ otherwise.
Let $V \subseteq V(Q_n)$ be a set of $2^{n-1} + 1$ vertices, and let C be the principal sumbatrix of B_n obtained by taking the rows and columns corresponding to V. By interlacing we have

$$\mu_1(\mathcal{C}) \geq \mu_{2^{n-1}}(\mathcal{B}) = \sqrt{n}.$$

Observe that $C_{uv} = B_{uv} = \pm 1$ iff $u \sim v$ in Q_n (and hence H) and $C_{uv} = 0$ otherwise. By our first lemma, we conclude that

$$\Delta(H) \geq \mu_1(C)$$

Let $V \subseteq V(Q_n)$ be a set of $2^{n-1} + 1$ vertices, and let C be the principal sumbatrix of B_n obtained by taking the rows and columns corresponding to V. By interlacing we have

$$\mu_1(\mathcal{C}) \geq \mu_{2^{n-1}}(\mathcal{B}) = \sqrt{n}.$$

Observe that $C_{uv} = B_{uv} = \pm 1$ iff $u \sim v$ in Q_n (and hence H) and $C_{uv} = 0$ otherwise. By our first lemma, we conclude that

 $\Delta(H) \geq \mu_1(C) \geq \sqrt{n}.$

While the eigenvalues of A can tell us a lot about our graph G, it has its limitations.

(ロ)、(型)、(E)、(E)、 E) の(の)

While the eigenvalues of A can tell us a lot about our graph G, it has its limitations. For example, the following two graphs have the same adjacency matrix spectrum of $\{-2, 0, 0, 0, 2\}$, and such pairs are called cospectral.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

While the eigenvalues of A can tell us a lot about our graph G, it has its limitations. For example, the following two graphs have the same adjacency matrix spectrum of $\{-2, 0, 0, 0, 2\}$, and such pairs are called cospectral.

Corollary

From the eigenvalues of A it is impossible to determine if G is connected, contains a C_4 , etc.

From the proof of the Sensitivity Conjecture, we've already seen that instead of using A, we can use some other matrix associated to G in order to try and solve our problems.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

G

 $G \rightarrow M_G$

 $G \to M_G \to \sigma(M_G)$

 $G \to M_G \to \sigma(M_G) \to \text{Combinatorial Properties of } G.$

 $G \to M_G \to \sigma(M_G) \to \text{Combinatorial Properties of } G.$

For this to actually be useful, it is crucial that the matrix (and its eigenvalues) are reasonable to compute.

 $G \to M_G \to \sigma(M_G) \to \text{Combinatorial Properties of } G.$

For this to actually be useful, it is crucial that the matrix (and its eigenvalues) are reasonable to compute. E.g. the following is not a very useful matrix

$$X_{G} = \chi(G) \cdot I.$$

Let D be the diagonal matrix of degrees of G, i.e. $D_{uu} = d_u$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let *D* be the diagonal matrix of degrees of *G*, i.e. $D_{uu} = d_u$. Define the Laplacian matrix

$$L=D-A.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let D be the diagonal matrix of degrees of G, i.e. $D_{uu} = d_u$. Define the Laplacian matrix

$$L = D - A.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Let D be the diagonal matrix of degrees of G, i.e. $D_{uu} = d_u$. Define the Laplacian matrix

$$L=D-A.$$

Note that L arises as a boundary-coboundary operator, as well as a chip firing operator in the Abelian sandpile model.

Let $0 = \lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of *L*.

(ロ)、(型)、(E)、(E)、 E) の(の)

Let $0 = \lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of *L*.

Theorem (Matrix-Tree Theorem)

Let $\tau(G)$ denote the number of spanning trees of G. Then

$$\tau(G) = \frac{1}{n} \prod_{i=2}^{n} \lambda_i.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $0 = \lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of *L*.

Theorem (Matrix-Tree Theorem)

Let $\tau(G)$ denote the number of spanning trees of G. Then

$$\tau(G) = \frac{1}{n} \prod_{i=2}^{n} \lambda_i.$$

It's not hard to show that for the complete graph we have $\sigma(L) = \{0, n^{(n-1)}\}$, so $\tau(K_n) = n^{n-2}$.

Let $0 = \lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of *L*.

Theorem (Matrix-Tree Theorem)

Let $\tau(G)$ denote the number of spanning trees of G. Then

$$\tau(G) = \frac{1}{n} \prod_{i=2}^{n} \lambda_i.$$

It's not hard to show that for the complete graph we have $\sigma(L) = \{0, n^{(n-1)}\}$, so $\tau(K_n) = n^{n-2}$.

Corollary (Cayley's Formula)

The number of labeled trees on n vertices is n^{n-2} .

Theorem (Godsil, Newman)

Let S be an independent set in G. If $\overline{d}(S)$ is the average degree of the vertices in S, then

$$|S| \leq \left(1 - \frac{\bar{d}(S)}{\lambda_n}\right) n.$$

Theorem (Godsil, Newman)

Let S be an independent set in G. If $\overline{d}(S)$ is the average degree of the vertices in S, then

$$|S| \leq \left(1 - rac{ar{d}(S)}{\lambda_n}\right) n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If G is d-regular, then

$$\alpha(G) \leq \frac{\lambda_n - d}{\lambda_n} \cdot n$$

Theorem (Godsil, Newman)

Let S be an independent set in G. If $\overline{d}(S)$ is the average degree of the vertices in S, then

$$|S| \leq \left(1 - \frac{\bar{d}(S)}{\lambda_n}\right) n.$$

If G is d-regular, then

$$\alpha(G) \leq \frac{\lambda_n - d}{\lambda_n} \cdot n = \frac{-\mu_n}{d - \mu_n} \cdot n$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Godsil, Newman)

Let S be an independent set in G. If $\overline{d}(S)$ is the average degree of the vertices in S, then

$$|S| \leq \left(1 - \frac{\bar{d}(S)}{\lambda_n}\right) n.$$

If G is d-regular, then

$$\alpha(G) \leq \frac{\lambda_n - d}{\lambda_n} \cdot n = \frac{-\mu_n}{d - \mu_n} \cdot n,$$

because D = dI (giving L = dI - A).

Theorem (Godsil, Newman)

Let S be an independent set in G. If $\overline{d}(S)$ is the average degree of the vertices in S, then

$$|S| \leq \left(1 - \frac{\bar{d}(S)}{\lambda_n}\right) n.$$

If G is d-regular, then

$$\alpha(G) \leq \frac{\lambda_n - d}{\lambda_n} \cdot n = \frac{-\mu_n}{d - \mu_n} \cdot n,$$

because D = dI (giving L = dI - A). More generally, for regular graphs it is often the case that many choices of M will solve the problem (with the "correct M" generalizing to non-regular graphs).

$$\mathcal{L} = D^{-1/2} L D^{-1/2} = I - D^{-1/2} A D^{-1/2}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\mathcal{L} = D^{-1/2} L D^{-1/2} = I - D^{-1/2} A D^{-1/2}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\mathcal{L} = D^{-1/2} L D^{-1/2} = I - D^{-1/2} A D^{-1/2}$$

Recall that a random walk is defined by starting at some vertex and then iteratively choosing a uniformly random neighbor to walk to.

$$\mathcal{L} = D^{-1/2} L D^{-1/2} = I - D^{-1/2} A D^{-1/2}$$

Recall that a random walk is defined by starting at some vertex and then iteratively choosing a uniformly random neighbor to walk to. The probability transition matrix of this process is AD^{-1}

$$\mathcal{L} = D^{-1/2} L D^{-1/2} = I - D^{-1/2} A D^{-1/2}$$

Recall that a random walk is defined by starting at some vertex and then iteratively choosing a uniformly random neighbor to walk to. The probability transition matrix of this process is $AD^{-1} \sim D^{-1/2}AD^{-1/2}$.

$$\mathcal{L} = D^{-1/2} L D^{-1/2} = I - D^{-1/2} A D^{-1/2}$$

Recall that a random walk is defined by starting at some vertex and then iteratively choosing a uniformly random neighbor to walk to. The probability transition matrix of this process is $AD^{-1} \sim D^{-1/2}AD^{-1/2}$. Thus the eigenvalues of \mathcal{L} control how quickly random walks converge (and this exact formulation also gives it a nice Raleigh quotient to work with).

sspiro@ucsd.edu

www.admonymous.co/samspiro

Link also on my website.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thank You!