An Introduction to Spectral Graph Theory

Sam Spiro, UC San Diego.

The Adjacency Matrix

Given a graph G, we define its adjacency matrix $A_{G}=A$ with rows and columns indexed by $V(G)$ by $A_{u v}=1$ if $u v \in E(G)$ and $A_{u v}=0$ otherwise.

The Adjacency Matrix

Given a graph G, we define its adjacency matrix $A_{G}=A$ with rows and columns indexed by $V(G)$ by $A_{u v}=1$ if $u v \in E(G)$ and $A_{u v}=0$ otherwise.

$$
\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The Adjacency Matrix

Given a graph G, we define its adjacency matrix $A_{G}=A$ with rows and columns indexed by $V(G)$ by $A_{u v}=1$ if $u v \in E(G)$ and $A_{u v}=0$ otherwise.

$$
\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

A priori, A is just a table of numbers representing G, and in particular there's no reason to expect that its structure as a linear operator encodes anything about G.

The Adjacency Matrix

Given a graph G, we define its adjacency matrix $A_{G}=A$ with rows and columns indexed by $V(G)$ by $A_{u v}=1$ if $u v \in E(G)$ and $A_{u v}=0$ otherwise.

$$
\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

A priori, A is just a table of numbers representing G, and in particular there's no reason to expect that its structure as a linear operator encodes anything about G. Remarkably this is not the case!

The Adjacency Matrix

Given a graph G, we define its adjacency matrix $A_{G}=A$ with rows and columns indexed by $V(G)$ by $A_{u v}=1$ if $u v \in E(G)$ and $A_{u v}=0$ otherwise.

$$
\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

A priori, A is just a table of numbers representing G, and in particular there's no reason to expect that its structure as a linear operator encodes anything about G. Remarkably this is not the case! Because A is a real symmetric matrix, it has real eigenvalues $\mu_{1} \geq \cdots \geq \mu_{n}$.

The Adjacency Matrix

A walk of length k in G is a sequence of (not necessarily distinct) vertices x_{1}, \ldots, x_{k+1} such that $x_{i} \sim x_{i+1}$ for all $1 \leq i \leq k$. A walk is said to be closed if $x_{k+1}=x_{1}$.

The Adjacency Matrix

A walk of length k in G is a sequence of (not necessarily distinct) vertices x_{1}, \ldots, x_{k+1} such that $x_{i} \sim x_{i+1}$ for all $1 \leq i \leq k$. A walk is said to be closed if $x_{k+1}=x_{1}$.

The Adjacency Matrix

A walk of length k in G is a sequence of (not necessarily distinct) vertices x_{1}, \ldots, x_{k+1} such that $x_{i} \sim x_{i+1}$ for all $1 \leq i \leq k$. A walk is said to be closed if $x_{k+1}=x_{1}$.

Lemma

The number of walks of length k from u to v is $A_{u v}^{k}$.

The Adjacency Matrix

A walk of length k in G is a sequence of (not necessarily distinct) vertices x_{1}, \ldots, x_{k+1} such that $x_{i} \sim x_{i+1}$ for all $1 \leq i \leq k$. A walk is said to be closed if $x_{k+1}=x_{1}$.

Lemma

The number of walks of length k from u to v is $A_{u v}^{k}$.
By definition of matrix multiplication, we have

$$
A_{u v}^{k}=\sum A_{u w_{1}} \cdots A_{w_{k-1} v},
$$

where the sum ranges over all sequences w_{1}, \ldots, w_{k-1}.

The Adjacency Matrix

A walk of length k in G is a sequence of (not necessarily distinct) vertices x_{1}, \ldots, x_{k+1} such that $x_{i} \sim x_{i+1}$ for all $1 \leq i \leq k$. A walk is said to be closed if $x_{k+1}=x_{1}$.

Lemma

The number of walks of length k from u to v is $A_{u v}^{k}$.
By definition of matrix multiplication, we have

$$
A_{u v}^{k}=\sum A_{u w_{1}} \cdots A_{w_{k-1} v}
$$

where the sum ranges over all sequences w_{1}, \ldots, w_{k-1}. The term will be 1 if this sequence defines a walk and will be 0 otherwise.

The Adjacency Matrix

Lemma

The number of walks of length k from u to v is $A_{u, v}^{k}$.

The Adjacency Matrix

Lemma

The number of walks of length k from u to v is $A_{u, v}^{k}$.

Corollary

The number of closed walks of length k is $\operatorname{Tr}\left(A^{k}\right)$

The Adjacency Matrix

Lemma

The number of walks of length k from u to v is $A_{u, v}^{k}$.

Corollary

The number of closed walks of length k is $\operatorname{Tr}\left(A^{k}\right)=\sum \mu_{i}^{k}$.

The Adjacency Matrix

Lemma

The number of walks of length k from u to v is $A_{u, v}^{k}$.

Corollary

The number of closed walks of length k is $\operatorname{Tr}\left(A^{k}\right)=\sum \mu_{i}^{k}$.

Corollary
$\sum \mu_{i}^{2}=2 e(G)$.

The Adjacency Matrix

Lemma

The number of walks of length k from u to v is $A_{u, v}^{k}$.

Corollary

The number of closed walks of length k is $\operatorname{Tr}\left(A^{k}\right)=\sum \mu_{i}^{k}$.

Corollary
$\sum \mu_{i}^{2}=2 e(G)$.
Corollary
A graph G is bipartite iff $\sigma(A)$ is symmetric about 0 .

The Adjacency Matrix

Corollary

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0 .

The Adjacency Matrix

Corollary

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0 .
Assume G is bipartite with bipartition $U \cup V$.

The Adjacency Matrix

Corollary

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0 .
Assume G is bipartite with bipartition $U \cup V$. Let $x \neq 0$ be such that $A x=\mu x$.

The Adjacency Matrix

Corollary

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0 .
Assume G is bipartite with bipartition $U \cup V$. Let $x \neq 0$ be such that $A x=\mu x$. Define y such that $y_{u}=x_{u}$ if $u \in U$ and $y_{v}=-x_{v}$ if $v \in V$.

The Adjacency Matrix

Corollary

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0 .
Assume G is bipartite with bipartition $U \cup V$. Let $x \neq 0$ be such that $A x=\mu x$. Define y such that $y_{u}=x_{u}$ if $u \in U$ and $y_{v}=-x_{v}$ if $v \in V$. Then for $u \in U$ we have

$$
(A y)_{u}=\sum_{v \sim u} y_{v}
$$

The Adjacency Matrix

Corollary

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0 .
Assume G is bipartite with bipartition $U \cup V$. Let $x \neq 0$ be such that $A x=\mu x$. Define y such that $y_{u}=x_{u}$ if $u \in U$ and $y_{v}=-x_{v}$ if $v \in V$. Then for $u \in U$ we have

$$
(A y)_{u}=\sum_{v \sim u} y_{v}=-\sum_{v \sim u} x_{v}
$$

The Adjacency Matrix

Corollary

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0 .
Assume G is bipartite with bipartition $U \cup V$. Let $x \neq 0$ be such that $A x=\mu x$. Define y such that $y_{u}=x_{u}$ if $u \in U$ and $y_{v}=-x_{v}$ if $v \in V$. Then for $u \in U$ we have

$$
(A y)_{u}=\sum_{v \sim u} y_{v}=-\sum_{v \sim u} x_{v}=-(A x)_{u}
$$

The Adjacency Matrix

Corollary

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0 .
Assume G is bipartite with bipartition $U \cup V$. Let $x \neq 0$ be such that $A x=\mu x$. Define y such that $y_{u}=x_{u}$ if $u \in U$ and $y_{v}=-x_{v}$ if $v \in V$. Then for $u \in U$ we have

$$
(A y)_{u}=\sum_{v \sim u} y_{v}=-\sum_{v \sim u} x_{v}=-(A x)_{u}=-\mu x_{u}
$$

The Adjacency Matrix

Corollary

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0 .
Assume G is bipartite with bipartition $U \cup V$. Let $x \neq 0$ be such that $A x=\mu x$. Define y such that $y_{u}=x_{u}$ if $u \in U$ and $y_{v}=-x_{v}$ if $v \in V$. Then for $u \in U$ we have

$$
(A y)_{u}=\sum_{v \sim u} y_{v}=-\sum_{v \sim u} x_{v}=-(A x)_{u}=-\mu x_{u}=-\mu y_{u}
$$

The Adjacency Matrix

Corollary

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0 .
Assume G is bipartite with bipartition $U \cup V$. Let $x \neq 0$ be such that $A x=\mu x$. Define y such that $y_{u}=x_{u}$ if $u \in U$ and $y_{v}=-x_{v}$ if $v \in V$. Then for $u \in U$ we have

$$
(A y)_{u}=\sum_{v \sim u} y_{v}=-\sum_{v \sim u} x_{v}=-(A x)_{u}=-\mu x_{u}=-\mu y_{u}
$$

Thus $A y=-\mu y$.

The Adjacency Matrix

Corollary

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0 .
Assume G is bipartite with bipartition $U \cup V$. Let $x \neq 0$ be such that $A x=\mu x$. Define y such that $y_{u}=x_{u}$ if $u \in U$ and $y_{v}=-x_{v}$ if $v \in V$. Then for $u \in U$ we have

$$
(A y)_{u}=\sum_{v \sim u} y_{v}=-\sum_{v \sim u} x_{v}=-(A x)_{u}=-\mu x_{u}=-\mu y_{u}
$$

Thus $A y=-\mu y$. Further, k linearly independent eigenvectors of μ correspond to k linearly independent eigenvectors of $-\mu$, so the spectrum of A is symmetric about 0 .

The Adjacency Matrix

Corollary

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0 .
Conversely, if the spectrum of A is symmetric about 0 , then $\sum \mu_{i}^{k}=0$ for all odd k.

The Adjacency Matrix

Corollary

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0 .
Conversely, if the spectrum of A is symmetric about 0 , then $\sum \mu_{i}^{k}=0$ for all odd k. Thus G has no closed walks of odd length.

The Adjacency Matrix

Corollary

A graph G is bipartite iff $\sigma(A)$ is symmetric about 0 .
Conversely, if the spectrum of A is symmetric about 0 , then $\sum \mu_{i}^{k}=0$ for all odd k. Thus G has no closed walks of odd length. In particular, G contains no odd cycles, which is equivalent to being bipartite.

The Adjacency Matrix

Proposition

For a connected graph, the number of distinct eigenvalues of A is larger than the diameter of G.

The Adjacency Matrix

Proposition

For a connected graph, the number of distinct eigenvalues of A is larger than the diameter of G.

Theorem (Hoffman; Wilf)

$$
1-\frac{\mu_{1}}{\mu_{n}} \leq \chi(G) \leq \mu_{1}+1
$$

The Adjacency Matrix

Proposition

For a connected graph, the number of distinct eigenvalues of A is larger than the diameter of G.

Theorem (Hoffman; Wilf)

$$
1-\frac{\mu_{1}}{\mu_{n}} \leq \chi(G) \leq \mu_{1}+1
$$

Theorem (Hoffman)
If G is d-regular then $\alpha(G) \leq \frac{-\mu_{n}}{d-\mu_{n}} \cdot n$.

The Adjacency Matrix

Theorem

If G has maximum degree Δ and average degree \bar{d}. Then

$$
\bar{d} \leq \mu_{1} \leq \Delta
$$

The Adjacency Matrix

Theorem

If G has maximum degree Δ and average degree \bar{d}. Then

$$
\bar{d} \leq \mu_{1} \leq \Delta
$$

$$
\mu_{1}=\max _{x \neq 0} \frac{x^{*} A x}{x^{*} x}
$$

The Adjacency Matrix

Theorem

If G has maximum degree Δ and average degree \bar{d}. Then

$$
\bar{d} \leq \mu_{1} \leq \Delta
$$

Lemma

$$
\mu_{1}=\max _{x \neq 0} \frac{x^{*} A x}{x^{*} x}
$$

For the lower bound, let $\mathbf{1}$ be the all 1's vector.

The Adjacency Matrix

Theorem

If G has maximum degree Δ and average degree \bar{d}. Then

$$
\bar{d} \leq \mu_{1} \leq \Delta
$$

Lemma

$$
\mu_{1}=\max _{x \neq 0} \frac{x^{*} A x}{x^{*} x}
$$

For the lower bound, let $\mathbf{1}$ be the all 1's vector. Then

$$
\mu_{1}=\max _{x \neq 0} \frac{x^{*} A x}{x^{*} x}
$$

The Adjacency Matrix

Theorem

If G has maximum degree Δ and average degree \bar{d}. Then

$$
\bar{d} \leq \mu_{1} \leq \Delta
$$

Lemma

$$
\mu_{1}=\max _{x \neq 0} \frac{x^{*} A x}{x^{*} x}
$$

For the lower bound, let $\mathbf{1}$ be the all 1's vector. Then

$$
\mu_{1}=\max _{x \neq 0} \frac{x^{*} A x}{x^{*} x} \geq \frac{\mathbf{1}^{*} A \mathbf{1}}{\mathbf{1}^{*} \mathbf{1}}
$$

The Adjacency Matrix

Theorem

If G has maximum degree Δ and average degree \bar{d}. Then

$$
\bar{d} \leq \mu_{1} \leq \Delta
$$

Lemma

$$
\mu_{1}=\max _{x \neq 0} \frac{x^{*} A x}{x^{*} x}
$$

For the lower bound, let $\mathbf{1}$ be the all 1's vector. Then

$$
\mu_{1}=\max _{x \neq 0} \frac{x^{*} A x}{x^{*} x} \geq \frac{\mathbf{1}^{*} A \mathbf{1}}{\mathbf{1}^{*} \mathbf{1}}=\frac{\sum d_{v}}{n}
$$

The Adjacency Matrix

Theorem

If G has maximum degree Δ and average degree \bar{d}. Then

$$
\bar{d} \leq \mu_{1} \leq \Delta
$$

Lemma

$$
\mu_{1}=\max _{x \neq 0} \frac{x^{*} A x}{x^{*} x}
$$

For the lower bound, let $\mathbf{1}$ be the all 1's vector. Then

$$
\mu_{1}=\max _{x \neq 0} \frac{x^{*} A x}{x^{*} x} \geq \frac{\mathbf{1}^{*} A \mathbf{1}}{\mathbf{1}^{*} \mathbf{1}}=\frac{\sum d_{v}}{n}=\bar{d} .
$$

The Adjacency Matrix

Theorem

$$
\mu_{1} \leq \Delta
$$

The Adjacency Matrix

Theorem

$$
\mu_{1} \leq \Delta
$$

Let x be an eigenvector of A corresponding to μ_{1} and let $v \in V(G)$ be such that $\left|x_{v}\right|$ is maximized.

The Adjacency Matrix

Theorem

$$
\mu_{1} \leq \Delta
$$

Let x be an eigenvector of A corresponding to μ_{1} and let $v \in V(G)$ be such that $\left|x_{v}\right|$ is maximized. Then we have

$$
\left|\mu_{1} x_{v}\right|=\left|(A x)_{v}\right|
$$

The Adjacency Matrix

Theorem

$$
\mu_{1} \leq \Delta .
$$

Let x be an eigenvector of A corresponding to μ_{1} and let $v \in V(G)$ be such that $\left|x_{v}\right|$ is maximized. Then we have

$$
\left|\mu_{1} x_{v}\right|=\left|(A x)_{v}\right|=\left|\sum_{u} A_{u v} x_{u}\right|
$$

The Adjacency Matrix

Theorem

$$
\mu_{1} \leq \Delta .
$$

Let x be an eigenvector of A corresponding to μ_{1} and let $v \in V(G)$ be such that $\left|x_{v}\right|$ is maximized. Then we have

$$
\left|\mu_{1} x_{v}\right|=\left|(A x)_{v}\right|=\left|\sum_{u} A_{u v} x_{u}\right| \leq \sum_{u \sim v}\left|A_{u v} x_{u}\right|
$$

The Adjacency Matrix

Theorem

$$
\mu_{1} \leq \Delta .
$$

Let x be an eigenvector of A corresponding to μ_{1} and let $v \in V(G)$ be such that $\left|x_{v}\right|$ is maximized. Then we have

$$
\left|\mu_{1} x_{v}\right|=\left|(A x)_{v}\right|=\left|\sum_{u} A_{u v} x_{u}\right| \leq \sum_{u \sim v}\left|A_{u v} x_{u}\right| \leq d_{v}\left|x_{v}\right|
$$

The Adjacency Matrix

Theorem

$$
\mu_{1} \leq \Delta
$$

Let x be an eigenvector of A corresponding to μ_{1} and let $v \in V(G)$ be such that $\left|x_{v}\right|$ is maximized. Then we have

$$
\left|\mu_{1} x_{v}\right|=\left|(A x)_{v}\right|=\left|\sum_{u} A_{u v} x_{u}\right| \leq \sum_{u \sim v}\left|A_{u v} x_{u}\right| \leq d_{v}\left|x_{v}\right| \leq \Delta\left|x_{v}\right|
$$

The Adjacency Matrix

Theorem

$$
\mu_{1} \leq \Delta .
$$

Let x be an eigenvector of A corresponding to μ_{1} and let $v \in V(G)$ be such that $\left|x_{v}\right|$ is maximized. Then we have

$$
\left|\mu_{1} x_{v}\right|=\left|(A x)_{v}\right|=\left|\sum_{u} A_{u v} x_{u}\right| \leq \sum_{u \sim v}\left|A_{u v} x_{u}\right| \leq d_{v}\left|x_{v}\right| \leq \Delta\left|x_{v}\right|
$$

This gives $\left|\mu_{1}\right| \leq \Delta$, which in particular implies the result.

The Adjacency Matrix

In fact, this proof of the upper bound can be used to prove something slightly stronger.

The Adjacency Matrix

In fact, this proof of the upper bound can be used to prove something slightly stronger.

Theorem

Let G be a graph and M a Hermitian matrix such that whenever $u \sim v$ we have $\left|M_{u v}\right|=1$ and $M_{u v}=0$ otherwise. Then

$$
\mu_{1}(M) \leq \Delta .
$$

The Adjacency Matrix

In fact, this proof of the upper bound can be used to prove something slightly stronger.

Theorem

Let G be a graph and M a Hermitian matrix such that whenever $u \sim v$ we have $\left|M_{u v}\right|=1$ and $M_{u v}=0$ otherwise. Then

$$
\mu_{1}(M) \leq \Delta .
$$

This is not just generalization for generalization's sake!

The Adjacency Matrix

In fact, this proof of the upper bound can be used to prove something slightly stronger.

Theorem

Let G be a graph and M a Hermitian matrix such that whenever $u \sim v$ we have $\left|M_{u v}\right|=1$ and $M_{u v}=0$ otherwise. Then

$$
\mu_{1}(M) \leq \Delta
$$

This is not just generalization for generalization's sake! This is one of the key observations in Hao Huang's recent proof of the sensitivity conjecture.

The Sensitivity Conjecture

Let Q_{n} be the n-dimensional hypercube.

Picture from Wolfram MathWorld

The Sensitivity Conjecture

Let Q_{n} be the n-dimensional hypercube.

Picture from Wolfram MathWorld
More precisely it's the graph whose adjacency matrix can be defined recursively as $A_{0}=[0]$ and

$$
A_{n}=\left[\begin{array}{cc}
A_{n-1} & I \\
I & A_{n-1}
\end{array}\right]
$$

The Sensitivity Conjecture

We recall that an induced subgraph of G is any graph that is obtained by selecting some subset of its vertices and then taking every edge of G involving vertices of this subset.

The Sensitivity Conjecture

We recall that an induced subgraph of G is any graph that is obtained by selecting some subset of its vertices and then taking every edge of G involving vertices of this subset. For example, the following are all the induced subgraphs of Q_{2} up to isomorphism.

The Sensitivity Conjecture

We recall that an induced subgraph of G is any graph that is obtained by selecting some subset of its vertices and then taking every edge of G involving vertices of this subset.
For example, the following are all the induced subgraphs of Q_{2} up to isomorphism.

Theorem (Chung, Füredi, Graham, Seymour 1988)
If H is an induced subgraph of Q_{n} on $2^{n-1}+1$ vertices, then H has maximum degree at least $\frac{1}{2} \log _{2}(n)$.

The Sensitivity Conjecture

Theorem (Chung, Füredi, Graham, Seymour 1988)

If H is an induced subgraph of Q_{n} on $2^{n-1}+1$ vertices, then H has maximum degree at least $\frac{1}{2} \log _{2}(n)$

The Sensitivity Conjecture

Theorem (Chung, Füredi, Graham, Seymour 1988)

If H is an induced subgraph of Q_{n} on $2^{n-1}+1$ vertices, then H has maximum degree at least $\frac{1}{2} \log _{2}(n)$, and there exists such an induced subgraph whose maximum degree is $\lceil\sqrt{n}\rceil$.

The Sensitivity Conjecture

Theorem (Chung, Füredi, Graham, Seymour 1988)

If H is an induced subgraph of Q_{n} on $2^{n-1}+1$ vertices, then H has maximum degree at least $\frac{1}{2} \log _{2}(n)$, and there exists such an induced subgraph whose maximum degree is $\lceil\sqrt{n}\rceil$.

Theorem (Gotsman, Linial 1992)

Proving that H has maximum degree at least n^{ϵ} is equivalent to solving an important problem in computer science.

The Sensitivity Conjecture

Theorem (Chung, Füredi, Graham, Seymour 1988)

If H is an induced subgraph of Q_{n} on $2^{n-1}+1$ vertices, then H has maximum degree at least $\frac{1}{2} \log _{2}(n)$, and there exists such an induced subgraph whose maximum degree is $\lceil\sqrt{n}\rceil$.

Theorem (Gotsman, Linial 1992)

Proving that H has maximum degree at least n^{ϵ} is equivalent to solving an important problem in computer science.

Theorem (Huang 2019)

If H is an induced subgraph of Q_{n} on $2^{n-1}+1$ vertices, then it has maximum degree at least \sqrt{n}.

The Sensitivity Conjecture

Define the "twisted adjacency matrix" of Q_{n} by $B_{0}=[0]$ and

$$
B_{n}=\left[\begin{array}{cc}
B_{n-1} & l \\
l & -B_{n-1}
\end{array}\right] .
$$

The Sensitivity Conjecture

Define the "twisted adjacency matrix" of Q_{n} by $B_{0}=[0]$ and

$$
B_{n}=\left[\begin{array}{cc}
B_{n-1} & l \\
I & -B_{n-1}
\end{array}\right] .
$$

Lemma

The eigenvalues of B_{n} are $\pm \sqrt{n}$ each with multiplicity 2^{n-1}.

The Sensitivity Conjecture

Define the "twisted adjacency matrix" of Q_{n} by $B_{0}=[0]$ and

$$
B_{n}=\left[\begin{array}{cc}
B_{n-1} & I \\
I & -B_{n-1}
\end{array}\right] .
$$

Lemma

The eigenvalues of B_{n} are $\pm \sqrt{n}$ each with multiplicity 2^{n-1}.
We prove by induction that $B_{n}^{2}=n l$, the case $n=0$ being trivial.

The Sensitivity Conjecture

Define the "twisted adjacency matrix" of Q_{n} by $B_{0}=[0]$ and

$$
B_{n}=\left[\begin{array}{cc}
B_{n-1} & I \\
I & -B_{n-1}
\end{array}\right] .
$$

Lemma

The eigenvalues of B_{n} are $\pm \sqrt{n}$ each with multiplicity 2^{n-1}.
We prove by induction that $B_{n}^{2}=n l$, the case $n=0$ being trivial. Inductively we have

$$
B_{n}^{2}=\left[\begin{array}{cc}
B_{n-1}^{2}+l & 0 \\
0 & B_{n-1}^{2}+I
\end{array}\right]=n l
$$

The Sensitivity Conjecture

Define the "twisted adjacency matrix" of Q_{n} by $B_{0}=[0]$ and

$$
B_{n}=\left[\begin{array}{cc}
B_{n-1} & I \\
I & -B_{n-1}
\end{array}\right] .
$$

Lemma

The eigenvalues of B_{n} are $\pm \sqrt{n}$ each with multiplicity 2^{n-1}.
We prove by induction that $B_{n}^{2}=n l$, the case $n=0$ being trivial. Inductively we have

$$
B_{n}^{2}=\left[\begin{array}{cc}
B_{n-1}^{2}+l & 0 \\
0 & B_{n-1}^{2}+I
\end{array}\right]=n l
$$

Thus all the eigenvalues of B_{n} are $\pm \sqrt{n}$.

The Sensitivity Conjecture

Define the "twisted adjacency matrix" of Q_{n} by $B_{0}=[0]$ and

$$
B_{n}=\left[\begin{array}{cc}
B_{n-1} & I \\
I & -B_{n-1}
\end{array}\right] .
$$

Lemma

The eigenvalues of B_{n} are $\pm \sqrt{n}$ each with multiplicity 2^{n-1}.
We prove by induction that $B_{n}^{2}=n l$, the case $n=0$ being trivial. Inductively we have

$$
B_{n}^{2}=\left[\begin{array}{cc}
B_{n-1}^{2}+l & 0 \\
0 & B_{n-1}^{2}+I
\end{array}\right]=n l
$$

Thus all the eigenvalues of B_{n} are $\pm \sqrt{n}$. Because $\operatorname{Tr}\left(B_{n}\right)=0=\sum \mu_{i}\left(B_{n}\right)$, each appears with equal multiplicity.

The Sensitivity Conjecture

Lemma (Cauchy Interlacing Theorem)

Let B be a real symmetric $n \times n$ matrix and C an $m \times m$ principal sumbmatrix of B with $m \leq n$. If B has eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$ and C has eigenvalues $\mu_{1} \geq \cdots \geq \mu_{m}$, then

$$
\lambda_{i} \geq \mu_{i} \geq \lambda_{i+n-m}
$$

The Sensitivity Conjecture

Let $V \subseteq V\left(Q_{n}\right)$ be a set of $2^{n-1}+1$ vertices, and let C be the principal sumbatrix of B_{n} obtained by taking the rows and columns corresponding to V.

The Sensitivity Conjecture

Let $V \subseteq V\left(Q_{n}\right)$ be a set of $2^{n-1}+1$ vertices, and let C be the principal sumbatrix of B_{n} obtained by taking the rows and columns corresponding to V. By interlacing we have

$$
\mu_{1}(C) \geq \mu_{2^{n-1}}(B)
$$

The Sensitivity Conjecture

Let $V \subseteq V\left(Q_{n}\right)$ be a set of $2^{n-1}+1$ vertices, and let C be the principal sumbatrix of B_{n} obtained by taking the rows and columns corresponding to V. By interlacing we have

$$
\mu_{1}(C) \geq \mu_{2^{n-1}}(B)=\sqrt{n}
$$

The Sensitivity Conjecture

Let $V \subseteq V\left(Q_{n}\right)$ be a set of $2^{n-1}+1$ vertices, and let C be the principal sumbatrix of B_{n} obtained by taking the rows and columns corresponding to V. By interlacing we have

$$
\mu_{1}(C) \geq \mu_{2^{n-1}}(B)=\sqrt{n}
$$

Observe that $C_{u v}=B_{u v}= \pm 1$ iff $u \sim v$ in Q_{n} (and hence H) and $C_{u v}=0$ otherwise.

The Sensitivity Conjecture

Let $V \subseteq V\left(Q_{n}\right)$ be a set of $2^{n-1}+1$ vertices, and let C be the principal sumbatrix of B_{n} obtained by taking the rows and columns corresponding to V. By interlacing we have

$$
\mu_{1}(C) \geq \mu_{2^{n-1}}(B)=\sqrt{n}
$$

Observe that $C_{u v}=B_{u v}= \pm 1$ iff $u \sim v$ in Q_{n} (and hence H) and $C_{u v}=0$ otherwise. By our first lemma, we conclude that

$$
\Delta(H) \geq \mu_{1}(C)
$$

The Sensitivity Conjecture

Let $V \subseteq V\left(Q_{n}\right)$ be a set of $2^{n-1}+1$ vertices, and let C be the principal sumbatrix of B_{n} obtained by taking the rows and columns corresponding to V. By interlacing we have

$$
\mu_{1}(C) \geq \mu_{2^{n-1}}(B)=\sqrt{n}
$$

Observe that $C_{u v}=B_{u v}= \pm 1$ iff $u \sim v$ in Q_{n} (and hence H) and $C_{u v}=0$ otherwise. By our first lemma, we conclude that

$$
\Delta(H) \geq \mu_{1}(C) \geq \sqrt{n}
$$

Other Spectral Theories

While the eigenvalues of A can tell us a lot about our graph G, it has its limitations.

Other Spectral Theories

While the eigenvalues of A can tell us a lot about our graph G, it has its limitations. For example, the following two graphs have the same adjacency matrix spectrum of $\{-2,0,0,0,2\}$, and such pairs are called cospectral.

Other Spectral Theories

While the eigenvalues of A can tell us a lot about our graph G, it has its limitations. For example, the following two graphs have the same adjacency matrix spectrum of $\{-2,0,0,0,2\}$, and such pairs are called cospectral.

Corollary

From the eigenvalues of A it is impossible to determine if G is connected, contains a C_{4}, etc.

Other Spectral Theories

From the proof of the Sensitivity Conjecture, we've already seen that instead of using A, we can use some other matrix associated to G in order to try and solve our problems.

Other Spectral Theories

From the proof of the Sensitivity Conjecture, we've already seen that instead of using A, we can use some other matrix associated to G in order to try and solve our problems. More generally, spectral graph theory works as follows:

G

Other Spectral Theories

From the proof of the Sensitivity Conjecture, we've already seen that instead of using A, we can use some other matrix associated to G in order to try and solve our problems. More generally, spectral graph theory works as follows:

$$
G \rightarrow M_{G}
$$

Other Spectral Theories

From the proof of the Sensitivity Conjecture, we've already seen that instead of using A, we can use some other matrix associated to G in order to try and solve our problems. More generally, spectral graph theory works as follows:

$$
G \rightarrow M_{G} \rightarrow \sigma\left(M_{G}\right)
$$

Other Spectral Theories

From the proof of the Sensitivity Conjecture, we've already seen that instead of using A, we can use some other matrix associated to G in order to try and solve our problems. More generally, spectral graph theory works as follows:
$G \rightarrow M_{G} \rightarrow \sigma\left(M_{G}\right) \rightarrow$ Combinatorial Properties of G.

Other Spectral Theories

From the proof of the Sensitivity Conjecture, we've already seen that instead of using A, we can use some other matrix associated to G in order to try and solve our problems. More generally, spectral graph theory works as follows:

$$
G \rightarrow M_{G} \rightarrow \sigma\left(M_{G}\right) \rightarrow \text { Combinatorial Properties of } G
$$

For this to actually be useful, it is crucial that the matrix (and its eigenvalues) are reasonable to compute.

Other Spectral Theories

From the proof of the Sensitivity Conjecture, we've already seen that instead of using A, we can use some other matrix associated to G in order to try and solve our problems. More generally, spectral graph theory works as follows:

$$
G \rightarrow M_{G} \rightarrow \sigma\left(M_{G}\right) \rightarrow \text { Combinatorial Properties of } G
$$

For this to actually be useful, it is crucial that the matrix (and its eigenvalues) are reasonable to compute. E.g. the following is not a very useful matrix

$$
X_{G}=\chi(G) \cdot I
$$

The Laplacian

Let D be the diagonal matrix of degrees of G, i.e. $D_{u u}=d_{u}$.

The Laplacian

Let D be the diagonal matrix of degrees of G, i.e. $D_{u u}=d_{u}$. Define the Laplacian matrix

$$
L=D-A
$$

The Laplacian

Let D be the diagonal matrix of degrees of G, i.e. $D_{u u}=d_{u}$. Define the Laplacian matrix

$$
L=D-A
$$

The Laplacian

Let D be the diagonal matrix of degrees of G, i.e. $D_{u u}=d_{u}$. Define the Laplacian matrix

$$
L=D-A
$$

Note that L arises as a boundary-coboundary operator, as well as a chip firing operator in the Abelian sandpile model.

The Laplacian

Let $0=\lambda_{1} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of L.

The Laplacian

Let $0=\lambda_{1} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of L.
Theorem (Matrix-Tree Theorem)
Let $\tau(G)$ denote the number of spanning trees of G. Then

$$
\tau(G)=\frac{1}{n} \prod_{i=2}^{n} \lambda_{i}
$$

The Laplacian

Let $0=\lambda_{1} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of L.
Theorem (Matrix-Tree Theorem)
Let $\tau(G)$ denote the number of spanning trees of G. Then

$$
\tau(G)=\frac{1}{n} \prod_{i=2}^{n} \lambda_{i}
$$

It's not hard to show that for the complete graph we have $\sigma(L)=\left\{0, n^{(n-1)}\right\}$, so $\tau\left(K_{n}\right)=n^{n-2}$.

The Laplacian

Let $0=\lambda_{1} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of L.
Theorem (Matrix-Tree Theorem)
Let $\tau(G)$ denote the number of spanning trees of G. Then

$$
\tau(G)=\frac{1}{n} \prod_{i=2}^{n} \lambda_{i}
$$

It's not hard to show that for the complete graph we have $\sigma(L)=\left\{0, n^{(n-1)}\right\}$, so $\tau\left(K_{n}\right)=n^{n-2}$.

Corollary (Cayley's Formula)

The number of labeled trees on n vertices is n^{n-2}.

The Laplacian

Theorem (Godsil, Newman)
Let S be an independent set in G. If $\bar{d}(S)$ is the average degree of the vertices in S, then

$$
|S| \leq\left(1-\frac{\bar{d}(S)}{\lambda_{n}}\right) n
$$

The Laplacian

Theorem (Godsil, Newman)

Let S be an independent set in G. If $\bar{d}(S)$ is the average degree of the vertices in S, then

$$
|S| \leq\left(1-\frac{\bar{d}(S)}{\lambda_{n}}\right) n
$$

If G is d-regular, then

$$
\alpha(G) \leq \frac{\lambda_{n}-d}{\lambda_{n}} \cdot n
$$

The Laplacian

Theorem (Godsil, Newman)

Let S be an independent set in G. If $\bar{d}(S)$ is the average degree of the vertices in S, then

$$
|S| \leq\left(1-\frac{\bar{d}(S)}{\lambda_{n}}\right) n
$$

If G is d-regular, then

$$
\alpha(G) \leq \frac{\lambda_{n}-d}{\lambda_{n}} \cdot n=\frac{-\mu_{n}}{d-\mu_{n}} \cdot n
$$

The Laplacian

Theorem (Godsil, Newman)

Let S be an independent set in G. If $\bar{d}(S)$ is the average degree of the vertices in S, then

$$
|S| \leq\left(1-\frac{\bar{d}(S)}{\lambda_{n}}\right) n
$$

If G is d-regular, then

$$
\alpha(G) \leq \frac{\lambda_{n}-d}{\lambda_{n}} \cdot n=\frac{-\mu_{n}}{d-\mu_{n}} \cdot n,
$$

because $D=d l$ (giving $L=d I-A$).

The Laplacian

Theorem (Godsil, Newman)

Let S be an independent set in G. If $\bar{d}(S)$ is the average degree of the vertices in S, then

$$
|S| \leq\left(1-\frac{\bar{d}(S)}{\lambda_{n}}\right) n
$$

If G is d-regular, then

$$
\alpha(G) \leq \frac{\lambda_{n}-d}{\lambda_{n}} \cdot n=\frac{-\mu_{n}}{d-\mu_{n}} \cdot n,
$$

because $D=d l$ (giving $L=d l-A$).
More generally, for regular graphs it is often the case that many choices of M will solve the problem (with the "correct M " generalizing to non-regular graphs).

The Normalized Laplacian

Let D be the diagonal matrix of degrees of G. For G a graph without isolated vertices, define the normalized Laplacian matrix

$$
\mathcal{L}=D^{-1 / 2} L D^{-1 / 2}=I-D^{-1 / 2} A D^{-1 / 2} .
$$

The Normalized Laplacian

Let D be the diagonal matrix of degrees of G. For G a graph without isolated vertices, define the normalized Laplacian matrix

$$
\mathcal{L}=D^{-1 / 2} L D^{-1 / 2}=I-D^{-1 / 2} A D^{-1 / 2} .
$$

The Normalized Laplacian

Let D be the diagonal matrix of degrees of G. For G a graph without isolated vertices, define the normalized Laplacian matrix

$$
\mathcal{L}=D^{-1 / 2} L D^{-1 / 2}=I-D^{-1 / 2} A D^{-1 / 2} .
$$

Recall that a random walk is defined by starting at some vertex and then iteratively choosing a uniformly random neighbor to walk to.

The Normalized Laplacian

Let D be the diagonal matrix of degrees of G. For G a graph without isolated vertices, define the normalized Laplacian matrix

$$
\mathcal{L}=D^{-1 / 2} L D^{-1 / 2}=I-D^{-1 / 2} A D^{-1 / 2} .
$$

Recall that a random walk is defined by starting at some vertex and then iteratively choosing a uniformly random neighbor to walk to. The probability transition matrix of this process is
$A D^{-1}$

The Normalized Laplacian

Let D be the diagonal matrix of degrees of G. For G a graph without isolated vertices, define the normalized Laplacian matrix

$$
\mathcal{L}=D^{-1 / 2} L D^{-1 / 2}=I-D^{-1 / 2} A D^{-1 / 2} .
$$

Recall that a random walk is defined by starting at some vertex and then iteratively choosing a uniformly random neighbor to walk to. The probability transition matrix of this process is
$A D^{-1} \sim D^{-1 / 2} A D^{-1 / 2}$.

The Normalized Laplacian

Let D be the diagonal matrix of degrees of G. For G a graph without isolated vertices, define the normalized Laplacian matrix

$$
\mathcal{L}=D^{-1 / 2} L D^{-1 / 2}=I-D^{-1 / 2} A D^{-1 / 2} .
$$

Recall that a random walk is defined by starting at some vertex and then iteratively choosing a uniformly random neighbor to walk to. The probability transition matrix of this process is $A D^{-1} \sim D^{-1 / 2} A D^{-1 / 2}$. Thus the eigenvalues of \mathcal{L} control how quickly random walks converge (and this exact formulation also gives it a nice Raleigh quotient to work with).

How'd This Go?

sspiro@ucsd.edu

www.admonymous.co/samspiro

Link also on my website.

The End

Thank You!

