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The Adjacency Matrix

Given a graph G , we define its adjacency matrix AG = A with rows
and columns indexed by V (G ) by Auv = 1 if uv ∈ E (G ) and
Auv = 0 otherwise.

A priori, A is just a table of numbers representing G , and in
particular there’s no reason to expect that its structure as a linear
operator encodes anything about G . Remarkably this is not the
case! Because A is a real symmetric matrix, it has real eigenvalues
µ1 ≥ · · · ≥ µn.
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The Adjacency Matrix

A walk of length k in G is a sequence of (not necessarily distinct)

vertices x1, . . . , xk+1 such that xi ∼ xi+1 for all 1 ≤ i ≤ k. A walk is said

to be closed if xk+1 = x1.

•

•

•

•

1

2

4

3

Lemma

The number of walks of length k from u to v is Ak
uv .

By definition of matrix multiplication, we have

Ak
uv =

∑
Auw1 · · ·Awk−1v ,

where the sum ranges over all sequences w1, . . . ,wk−1. The term will be

1 if this sequence defines a walk and will be 0 otherwise.
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Lemma

The number of walks of length k from u to v is Ak
u,v .

Corollary

The number of closed walks of length k is Tr(Ak) =
∑
µki .

Corollary∑
µ2i = 2e(G ).

Corollary

A graph G is bipartite iff σ(A) is symmetric about 0.



The Adjacency Matrix

Lemma

The number of walks of length k from u to v is Ak
u,v .

Corollary

The number of closed walks of length k is Tr(Ak)

=
∑
µki .

Corollary∑
µ2i = 2e(G ).

Corollary

A graph G is bipartite iff σ(A) is symmetric about 0.



The Adjacency Matrix

Lemma

The number of walks of length k from u to v is Ak
u,v .

Corollary

The number of closed walks of length k is Tr(Ak) =
∑
µki .

Corollary∑
µ2i = 2e(G ).

Corollary

A graph G is bipartite iff σ(A) is symmetric about 0.



The Adjacency Matrix

Lemma

The number of walks of length k from u to v is Ak
u,v .

Corollary

The number of closed walks of length k is Tr(Ak) =
∑
µki .

Corollary∑
µ2i = 2e(G ).

Corollary

A graph G is bipartite iff σ(A) is symmetric about 0.



The Adjacency Matrix

Lemma

The number of walks of length k from u to v is Ak
u,v .

Corollary

The number of closed walks of length k is Tr(Ak) =
∑
µki .

Corollary∑
µ2i = 2e(G ).

Corollary

A graph G is bipartite iff σ(A) is symmetric about 0.



The Adjacency Matrix

Corollary

A graph G is bipartite iff σ(A) is symmetric about 0.

Assume G is bipartite with bipartition U ∪ V . Let x 6= 0 be such
that Ax = µx . Define y such that yu = xu if u ∈ U and yv = −xv
if v ∈ V . Then for u ∈ U we have

(Ay)u =
∑
v∼u

yv = −
∑
v∼u

xv = −(Ax)u = −µxu = −µyu.

Thus Ay = −µy . Further, k linearly independent eigenvectors of µ
correspond to k linearly independent eigenvectors of −µ, so the
spectrum of A is symmetric about 0.
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Corollary

A graph G is bipartite iff σ(A) is symmetric about 0.

Conversely, if the spectrum of A is symmetric about 0, then∑
µki = 0 for all odd k.

Thus G has no closed walks of odd
length. In particular, G contains no odd cycles, which is equivalent
to being bipartite.
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Proposition

For a connected graph, the number of distinct eigenvalues of A is
larger than the diameter of G.

Theorem (Hoffman; Wilf)

1− µ1
µn
≤ χ(G ) ≤ µ1 + 1.

Theorem (Hoffman)

If G is d-regular then α(G ) ≤ −µn
d−µn · n.
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Theorem

If G has maximum degree ∆ and average degree d̄ . Then

d̄ ≤ µ1 ≤ ∆.

Lemma

µ1 = max
x 6=0

x∗Ax

x∗x
.

For the lower bound, let 1 be the all 1’s vector. Then

µ1 = max
x 6=0

x∗Ax

x∗x
≥ 1∗A1

1∗1
=

∑
dv
n

= d̄ .
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Theorem

µ1 ≤ ∆.

Let x be an eigenvector of A corresponding to µ1 and let
v ∈ V (G ) be such that |xv | is maximized. Then we have

|µ1xv | = |(Ax)v | = |
∑
u

Auvxu| ≤
∑
u∼v
|Auvxu| ≤ dv |xv | ≤ ∆|xv |.

This gives |µ1| ≤ ∆, which in particular implies the result.
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The Adjacency Matrix

In fact, this proof of the upper bound can be used to prove
something slightly stronger.

Theorem

Let G be a graph and M a Hermitian matrix such that whenever
u ∼ v we have |Muv | = 1 and Muv = 0 otherwise. Then

µ1(M) ≤ ∆.

This is not just generalization for generalization’s sake! This is one
of the key observations in Hao Huang’s recent proof of the
sensitivity conjecture.
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The Sensitivity Conjecture

Let Qn be the n-dimensional hypercube.

Picture from Wolfram MathWorld

More precisely it’s the graph whose adjacency matrix can be
defined recursively as A0 = [0] and

An =

[
An−1 I
I An−1

]
.
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The Sensitivity Conjecture

We recall that an induced subgraph of G is any graph that is
obtained by selecting some subset of its vertices and then taking
every edge of G involving vertices of this subset.

For example, the following are all the induced subgraphs of Q2 up
to isomorphism.

•

•

•

•

•

• •

•

•

•

•

•

Theorem (Chung, Füredi, Graham, Seymour 1988)

If H is an induced subgraph of Qn on 2n−1 + 1 vertices, then H
has maximum degree at least 1

2 log2(n).
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Theorem (Chung, Füredi, Graham, Seymour 1988)

If H is an induced subgraph of Qn on 2n−1 + 1 vertices, then H
has maximum degree at least 1

2 log2(n)

, and there exists such an
induced subgraph whose maximum degree is

⌈√
n
⌉
.

Theorem (Gotsman, Linial 1992)

Proving that H has maximum degree at least nε is equivalent to
solving an important problem in computer science.

Theorem (Huang 2019)

If H is an induced subgraph of Qn on 2n−1 + 1 vertices, then it has
maximum degree at least

√
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The Sensitivity Conjecture

Define the “twisted adjacency matrix” of Qn by B0 = [0] and

Bn =

[
Bn−1 I
I −Bn−1

]
.

Lemma

The eigenvalues of Bn are ±
√
n each with multiplicity 2n−1.

We prove by induction that B2
n = nI , the case n = 0 being trivial.

Inductively we have

B2
n =

[
B2
n−1 + I 0

0 B2
n−1 + I

]
= nI .

Thus all the eigenvalues of Bn are ±
√
n. Because

Tr(Bn) = 0 =
∑
µi (Bn), each appears with equal multiplicity.
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The Sensitivity Conjecture

Lemma (Cauchy Interlacing Theorem)

Let B be a real symmetric n × n matrix and C an m ×m principal
sumbmatrix of B with m ≤ n. If B has eigenvalues λ1 ≥ · · · ≥ λn
and C has eigenvalues µ1 ≥ · · · ≥ µm, then

λi ≥ µi ≥ λi+n−m.



The Sensitivity Conjecture

Let V ⊆ V (Qn) be a set of 2n−1 + 1 vertices, and let C be the
principal sumbatrix of Bn obtained by taking the rows and columns
corresponding to V .

By interlacing we have

µ1(C ) ≥ µ2n−1(B) =
√
n.

Observe that Cuv = Buv = ±1 iff u ∼ v in Qn (and hence H) and
Cuv = 0 otherwise. By our first lemma, we conclude that

∆(H) ≥ µ1(C ) ≥
√
n.



The Sensitivity Conjecture

Let V ⊆ V (Qn) be a set of 2n−1 + 1 vertices, and let C be the
principal sumbatrix of Bn obtained by taking the rows and columns
corresponding to V . By interlacing we have

µ1(C ) ≥ µ2n−1(B)

=
√
n.

Observe that Cuv = Buv = ±1 iff u ∼ v in Qn (and hence H) and
Cuv = 0 otherwise. By our first lemma, we conclude that

∆(H) ≥ µ1(C ) ≥
√
n.



The Sensitivity Conjecture

Let V ⊆ V (Qn) be a set of 2n−1 + 1 vertices, and let C be the
principal sumbatrix of Bn obtained by taking the rows and columns
corresponding to V . By interlacing we have

µ1(C ) ≥ µ2n−1(B) =
√
n.

Observe that Cuv = Buv = ±1 iff u ∼ v in Qn (and hence H) and
Cuv = 0 otherwise. By our first lemma, we conclude that

∆(H) ≥ µ1(C ) ≥
√
n.



The Sensitivity Conjecture

Let V ⊆ V (Qn) be a set of 2n−1 + 1 vertices, and let C be the
principal sumbatrix of Bn obtained by taking the rows and columns
corresponding to V . By interlacing we have

µ1(C ) ≥ µ2n−1(B) =
√
n.

Observe that Cuv = Buv = ±1 iff u ∼ v in Qn (and hence H) and
Cuv = 0 otherwise.

By our first lemma, we conclude that

∆(H) ≥ µ1(C ) ≥
√
n.



The Sensitivity Conjecture

Let V ⊆ V (Qn) be a set of 2n−1 + 1 vertices, and let C be the
principal sumbatrix of Bn obtained by taking the rows and columns
corresponding to V . By interlacing we have

µ1(C ) ≥ µ2n−1(B) =
√
n.

Observe that Cuv = Buv = ±1 iff u ∼ v in Qn (and hence H) and
Cuv = 0 otherwise. By our first lemma, we conclude that

∆(H) ≥ µ1(C )

≥
√
n.



The Sensitivity Conjecture

Let V ⊆ V (Qn) be a set of 2n−1 + 1 vertices, and let C be the
principal sumbatrix of Bn obtained by taking the rows and columns
corresponding to V . By interlacing we have

µ1(C ) ≥ µ2n−1(B) =
√
n.

Observe that Cuv = Buv = ±1 iff u ∼ v in Qn (and hence H) and
Cuv = 0 otherwise. By our first lemma, we conclude that

∆(H) ≥ µ1(C ) ≥
√
n.



Other Spectral Theories

While the eigenvalues of A can tell us a lot about our graph G , it
has its limitations.

For example, the following two graphs have the
same adjacency matrix spectrum of {−2, 0, 0, 0, 2}, and such pairs
are called cospectral.

•

•

•

•
•

•

• • • •

Corollary

From the eigenvalues of A it is impossible to determine if G is
connected, contains a C4, etc.
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Other Spectral Theories

From the proof of the Sensitivity Conjecture, we’ve already seen
that instead of using A, we can use some other matrix associated
to G in order to try and solve our problems.

More generally,
spectral graph theory works as follows:

G → MG → σ(MG )→ Combinatorial Properties of G .

For this to actually be useful, it is crucial that the matrix (and its
eigenvalues) are reasonable to compute. E.g. the following is not a
very useful matrix

XG = χ(G ) · I .
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The Laplacian

Let D be the diagonal matrix of degrees of G , i.e. Duu = du.

Define the Laplacian matrix

L = D − A.

Note that L arises as a boundary-coboundary operator, as well as a
chip firing operator in the Abelian sandpile model.
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The Laplacian

Let 0 = λ1 ≤ · · · ≤ λn be the eigenvalues of L.

Theorem (Matrix-Tree Theorem)

Let τ(G ) denote the number of spanning trees of G. Then

τ(G ) =
1

n

n∏
i=2

λi .

It’s not hard to show that for the complete graph we have
σ(L) = {0, n(n−1)}, so τ(Kn) = nn−2.

Corollary (Cayley’s Formula)

The number of labeled trees on n vertices is nn−2.
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The Laplacian

Theorem (Godsil, Newman)

Let S be an independent set in G. If d̄(S) is the average degree of
the vertices in S, then

|S | ≤
(

1− d̄(S)

λn

)
n.

If G is d-regular, then

α(G ) ≤ λn − d

λn
· n =

−µn
d − µn

· n,

because D = dI (giving L = dI − A).
More generally, for regular graphs it is often the case that many
choices of M will solve the problem (with the “correct M”
generalizing to non-regular graphs).
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The Normalized Laplacian

Let D be the diagonal matrix of degrees of G . For G a graph
without isolated vertices, define the normalized Laplacian matrix

L = D−1/2LD−1/2 = I − D−1/2AD−1/2.

Recall that a random walk is defined by starting at some vertex
and then iteratively choosing a uniformly random neighbor to walk
to. The probability transition matrix of this process is
AD−1 ∼ D−1/2AD−1/2. Thus the eigenvalues of L control how
quickly random walks converge (and this exact formulation also
gives it a nice Raleigh quotient to work with).
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